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Abstract—Models for computer vision are commonly defined either

w.r.t. low-level concepts such as pixels that are to be grouped, or

w.r.t. high-level concepts such as semantic objects that are to be detected

and tracked. Combining bottom-up grouping with top-down detection

and tracking, although highly desirable, is a challenging problem. We

state this joint problem as a co-clustering problem that is principled and

tractable by existing algorithms. We demonstrate the effectiveness of this

approach by combining bottom-up motion segmentation by grouping of

point trajectories with high-level multiple object tracking by clustering of

bounding boxes. We show that solving the joint problem is beneficial at

the low-level, in terms of the FBMS59 motion segmentation benchmark,

and at the high-level, in terms of the Multiple Object Tracking benchmarks

MOT15, MOT16 and the MOT17 challenge, and is state-of-the-art in

some metrics.

1 INTRODUCTION

Computer vision methods commonly fall into one of two categories.

Bottom-up methods are centered around low-level concepts such

as pixels that are to be grouped. Top-down methods are centered

around high-level concepts such as semantic objects that are to

be detected or tracked. These concepts are usually learned from

datasets. Combinations of bottom-up and top-down methods are

highly desirable, as their advantages are complementary in practice

[11], [19], [28], [29], [30].
In this paper, we combine bottom-up motion segmentation

with top-down multiple object tracking. Specifically, we combine

bottom-up motion segmentation by grouping of point trajectories

with top-down multiple object tracking by clustering of bounding

boxes. Point trajectories are entities which represent single points

over time. Motion segmentation can be achieved as a spatial group-

ing of point trajectory based on motion cues. Object detections

represent sets of points which belong to object instances at one

point in time. Object tracking can be achieved by associating

detections over time.
Both individual grouping problems have been addressed most

successfully by correlation clustering approaches, also referred to

as minimum cost multicuts [39], [40], [45], [67], [68], [70].
However, point trajectories and bounding boxes form comple-

mentary cues to the solution of both problems: Point trajectories,
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Fig. 1. Left: Frames 100, 110, and 120 of the sequence MOT16-08 [50].
Right: Segmentation and tracking result are depicted as color-labeled
point trajectories and bounding boxes, respectively. Formulating bottom-
up motion segmentation and top-down multiple object tracking as a joint
co-clustering problem, combines advantages of both approaches and
is tolerant even to strong partial occlusion, indicated by the black arrow.
It establishes links between low-level concepts (point trajectories) and
high-level concepts (bounding boxes).

on the one hand, can help to cluster bounding box detections of the

same object across partial occlusions, a key challenge of bounding

box tracking alone (see Fig. 1). In conventional, purely high-level

methods, such occlusions can easily lead to identity switches or

lost tracks. However, low-level points on specific, well-structured

regions might be easy to track over a long period of time and thus

avoid identity switches. If sufficiently many such trajectories can

be found on an object of interest, the tracking problem becomes

trivial even if the frame-wise object detection fails.

Bounding boxes, on the other hand, can help to group point

trajectories in the presence of articulated motion, a key challenge

of motion segmentation with point trajectories alone. Ideally,

employing such pairwise information between detections may
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replace higher-order terms on trajectories as proposed in [53] or

[39]. While it is impossible to tell two rotational or scaling motions

apart when only considering pairs of trajectories, pairs of detection

bounding boxes contain enough points to distinguish their motion.

With sufficiently complex detection models, even articulated motion

can be disambiguated.

This motivates the combination of bottom-up motion segmen-

tation by grouping of point trajectories with top-down multiple

object tracking by clustering of bounding boxes.

Feature trajectories have been used for multiple object tracking

before, for example in [29], [30], [34], [43]. These previous

approaches face the challenge to combine possibly contradictive

information on the two different levels of granularity. This makes

the optimization using, for example, spectral clustering or condi-

tional random fields hard. In contrast to these previous works, we

formulate a joint optimization problem that can intrisically handle

conflicting information by the means of contraints.We contribute a

correlation co-clustering problem whose feasible solutions define

1) a feasible solution w.r.t. the bottom-up motion segmenta-

tion problem,

2) a feasible solution w.r.t. the top-down tracking problem,

and

3) an association between bottom-up concepts (point trajec-

tories) and top-down concepts (bounding boxes).

This association is depicted in Fig. 1 by colors. The existence of

such an association, which we postulate, establishes non-trivial

dependencies between the feasible solutions of the bottom-up and

top-down problem and, thus, to a consolidation of their respective

costs.

This formulation for combining possibly conflicting cues in a

clean an flexible way is beneficial at the low-level, as we show in

terms of the FBMS59 motion segmentation benchmark [54], where

we can report state-of-the-art performance. Particularly strong

improvements can be achieved w.r.t. the number of correctly

segmented objects. It is equally beneficial at the high-level, as we

show in terms of the multiple object tracking benchmarks [44]

[50], where it yields state-of-the-art results in some metrics and, in

particular, shows the ability to reduce the number of ID switches.

It is the winning entry of the MOT17 challenge for multiple object

tracking [44], [50], proving that it is easily applicable and results

do not dependent on tedious parameter tuning.

2 RELATED WORK

The combination of high-level and low-level cues is an established

idea in computer vision research. Its advantages have been

demonstrated for image segmentation [11] as well as for motion

segmentation in conjunction with tracking [19], [28], [29]. Similar

to points trajectories, head detections have been used as additional

features for multiple-person tracking for example in [9], [15], [32].

However, our proposed method is substantially different in that we

provide a unified graph structure whose partitioning both solves

the low level problem, here, the motion segmentation task, and

the high-level problem, i.e. the multi target tracking task, at the

same time and thus have a dual objective, formulated in a single

optimization problem. Closest in spirit to our approach is the

approach by Fragkiadaki et al. [30], where detectlets, small tracks

of detections, are classified in a graphical model that, at the same

time, performs trajectory clustering based on a spectral clustering

formulation.

Like our work, Fragkiadaki et al. [30] define a graph whose

nodes are point trajectories or (sets of) bounding boxes. Conflicting

information on both levels of granularity is handled by a mediation

step, i.e., the approach solves a sequence of constrained spectral

clustering problems. In contrast, we solve a single correlation

clustering problem, where the consolidation between high-level

and low-level information is handled intrinsically and directly via

constraints. This has clear advantages regarding optimality.

In Milan et al. [49], tracking and video segmentation are also

formulated as a joint problem. However, their approach employs

conditional random fields instead of correlation clustering, is built

upon temporal superpixels [14] instead of point trajectories and

strongly relies on unary terms learned on these superpixels.

The correlation clustering problem [6] is also known as the

minimum cost multicut or graph partition problem [20]. Despite

its APX-hardness [22], it is used as a mathematical abstraction for

a variety of computer vision tasks, including image segmentation

[1], [38], [41], [42], [79], multiple object tracking [67], [68] and

human body pose estimation [36], [60]. Unlike clustering problems

with non-negative costs, the correlation clustering problem does

not define a constraint or cost on the number or size of clusters.

Instead, these properties are defined by the solutions. Practical

algorithms for correlation clustering include local search heuristics

[7], [8], [41], [45] for finding feasible solutions, as well as cutting

plane algorithms [2], [38], [66] and a column generation algorithm

[79] for computing lower bounds. We resort to the local search

algorithm [41] for which C++ code is publicly available.

Motion segmentation by grouping of point trajectories is studied

in [12], [18], [37], [39], [40], [46], [48], [53], [54], [61], [64]. The

approaches of [12], [18], [37], [39], [40], [46], [48], [53], [54], [61],

[64] base their segmentations on pairwise affinities while [25], [39],

[53], [83] model higher order motions by varying means. In [39],

[53] third order terms are employed to explain not only translational

motion but also in-plane rotation and scaling. Zografos et al. [83]

model even more general 3D motion using group invariants.

Elhamifar and Vidal [25] model higher order motion subspaces. The

actual grouping in these methods is done using spectral clustering

with the exception of Rahmati et al. [61] who employ multi-label

graph cuts, Keuper [39] who employ higher-order minimum cost

multicuts, and Ji et al. [37] who optimize an unbalanced energy

that models the motion segmentation at the same time as the

point matching and solve it via the Alternating Direction Method

of Multiplier, i.e. they do not rely on any previous method to

define point trajectories. Similarly, the approach by Bideau and

Learned-Miller [57] works directly on the optical flow between

pairs of frames and uses information from the angle field to derive

a probabilistic model for object motion.

In Fragkiadaki et al. [29] motion trajectory grouping in a setup

similar to [12] is used to perform tracking. Although the grouping

in [29] is computed using spectral clustering, repulsive weights

can be applied based on the findings of Yu and Shi [80]. Resulsive

terms are computed from the segmentation topology. In contrast,

we compute both, attractive and repulsive weights, from motion

cues and object detections.

In our approach, we build on [40] where the grouping of point

trajectories is cast as a correlation clustering problem in terms

of pairwise potentials. Algorithms for turning groups of point

trajectories into a segmentation on the pixel grid were defined in

[51], [52].

Multiple object tracking by linking bounding box detections

(tracking by detection) was studied, e.g., in [4], [5], [30], [32], [33],
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V high

V low

(a) High-level bounding boxes and low-level trajectories (b) Proposed graph (c) Feasible solution

Fig. 2. Here, we visualize an exemplary graph G built on a two-frame video sequence showing two walking pedestrians. (a) At a high level, bounding
boxes describe feasible detections of humans. At a low level, trajectories describe feasible motions of points. (b) Both are represented here by nodes
in a graph. Nodes drawn as rectangles represent bounding boxes, nodes drawn as circles represent point trajectories. (c) An optimal decomposition
of the graph defines, firstly, a grouping of point trajectories, secondly, a clustering of bounding boxes, and thirdly, an assignment of point trajectories
to bounding boxes.

[33], [35], [58], [71], [81]. Therein, the combinatorial problem of

linking detection proposals over time is solved via integer linear

programming [65], [73], maximum a posteriori probability (MAP)

estimation [58], conditional random fields [43], dominant sets [72],

or continuous optimization [5]. To make the optimization in these

approaches tractable, non-maximum suppression or pre-grouping of

detections into tracklets is very common [4], [30], [33], [35], [71],

[76], [77], [81]. Andriluka et al. [4] use a hidden Markov model

(HMM) to build tracklets that cover the detections during a small

number of frames. Huang et al. [35] propose to use the Hungarian

algorithm in a three-level hierarchical association framework to

gradually increase the length of the tracklets. Zamir et al. [81] use

generalized minimum clique graphs to model the data association

problem both for the tracklet generation and the final trajectory

generation. Non-maximum suppression is also a crucial component

in disjoint path formulations, such as [15], [59], [74]. [15] propose

a pairwise overlap cost in their objective function to avoid multiple

objects occupying the same spatial location. Similarly [74] propose

spatial exclusion constraints to prevent overlapping cuboids in the

3D space.

We build on the prior work from Tang et al. [67], [68], where the

combination of bounding boxes is cast as a correlation clustering

problem.

3 CORRELATION CO-CLUSTERING

3.1 Optimization Problem

In this section, we state the low-level grouping of point trajectories

and the high-level clustering of bounding boxes in the form of

a single correlation co-clustering problem. In this, we build on

[41] which states the low-level problem as a correlation clustering

problem, and on [67] which states the high-level problem as a

correlation clustering problem. Our joint co-clustering problem

differs from [41], [67] in that it introduces dependencies between

the two sub-problems.

At the low level, we define a graph Glow = (V low, Elow)
whose nodes are point trajectories and whose edges connect point

trajectories that potentially belong to the same group. Such edges

are depicted in Fig. 2b in black. At the high level, we define a

graph Ghigh = (V high, Ehigh) whose nodes are bounding boxes

and whose edges connect bounding boxes that potentially belong

to the same object. Such edges are depicted in Fig. 2b in cyan.

Between these levels, we define a set Elh of additional edges

{u, v} ∈ Elh that connect a low-level point trajectory u ∈ V low

with a high-level bounding box v ∈ V high, indicating that both

potentially belong to the same object. Such edges are depicted in

Fig. 2b in magenta.

For the entire graph G = (V,E) with V := V low ∪ V high

and E := Elow ∪Ehigh ∪Elh and for any edge {u,w} ∈ E, we

define a cost cuv ∈ R that is positive, i.e. attractive, if u and v are

likely to belong to the same object and negative, i.e. repulsive, if v
and w are unlikely to belong to the same object. The estimation of

these costs from image data is described in detail below.

Also for every edge {u, v} ∈ E, we introduce a binary variable

yuv ∈ {0, 1} that indicates by yuv = 0 that u and v belong to the

same object and by yuv = 1 that u and v belong to distinct objects.

In order to ensure that the 01-labeling y ∈ {0, 1}E of all edges is

consistent and well-defines a decomposition of the graph G into

clusters, we impose on y the well-known cycle constraints (2) [20].

Overall, we consider the correlation co-clustering problem (1)–(2)

min
y∈{0,1}E

∑

ehigh∈Ehigh

cehighyehigh +
∑

elow∈Elow

celowyelow +
∑

ehl∈Elh

celhyelh (1)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

f∈C\{e}

yf (2)

Specifically, the cycle contraints (2) impose, for all cycles in G,

that, if one edge in the cycle is cut, so is at least one other. Thus,

intuitively, if any path between to nodes is cut, there can not be

a connection between these nodes via another path in G. Thus,

the feasible solutions to the optimization problem from Eq.(1)–(2)

are exactly all partitionings of the graph G. Given any sequence

of images, we construct an instance of this problem by defining

the graph G = (V,E) and costs c ∈ R
E . In the ideal case, each

partition describes either the entire background or exactly one

object throughout the whole video at two levels of granularity: the

tracked bounding boxes of this object and the point trajectories

of all points on the object. On the one hand, if an object is only

detected in few video frames and missed in others, the connection

between these detections can still be established in the graph via

point trajectories. On the other hand, false detections usually do

not move consistently with point trajectories and therefore tend

to end up as isolated nodes. Thus, they can easily be removed in

a postprocessing step. A proposed solution to the Correlation Co-
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Clustering problem on the graph in Fig. 2 (b) is shown in Fig. 2 (c).

It contains four clusters: one for each pedestrian tracked over time,

and two background clusters in which no detections are contained.

Below, we first describe the definition of the low-level subgraph

Glow = (V low, Elow) whose nodes are point trajectories, then the

definition of the high-level subgraph Ghigh = (V high, Ehigh)
whose nodes are bounding boxes, and finally the definition of

inter-level edges Elh that connect low-level point trajectories with

high-level bounding boxes.

3.2 Low-Level Graph of Point Trajectories

At the low level, we define the graph Glow = (V low, Elow)
whose nodes are point trajectories and whose edges connect

point trajectories that potentially belong to the same group. In

addition, we define, for every edge elow := {u, v} ∈ Elow, a cost

celow ∈ R to be payed for any feasible solution that assigns the

point trajectories u and v to distinct groups.

A point trajectory u ∈ V low is a spatio-temporal curve that

describes the long-term motion of its starting point. We compute

point trajectories from the image sequence by the algorithm of

[54]. For this, we track by large displacement optical flow [13] all

points sampled for the first image at a certain sampling rate for

which the image has sufficient structure. A point trajectory is ended

if the consistency between forward and backward optical flow is

large, indicating that the point is occluded or lost. Whenever the

trajectory density is lower than intended and the current image has

sufficient structure, we start a new trajectories in order to maintain

the desired sampling rate. For edges elow ∈ Elow, we define the

costs celow ∈ R exactly as Keuper et al. [40]. That is, we compute

the maximum motion difference dm(u, v) between the trajectories

u and v connected by elow during their shared time interval, as

proposed by Ochs, Malik and Brox [54] as

dm(u, v) = max
t

∥∂tu− ∂tv∥
vart

, (3)

where ∂tu and ∂tv are the partial derivatives of trajectories u and

v with respect to the time dimension and vart is the variation of

the optical flow in this frame. Intuitively, the normalization by

vart accounts for the fact that a small motion difference between

two trajectories is more important in a frame with hardly any

motion than in a frame with generally strong, possibly higher

order motion (compare [54] for more details). In addition, we

compute a color distance dc(u, v) and a spatial distance dsp(u, v)
between each pair of trajectories that share at least one image,

and spatial distances also for trajectories without temporal overlap.

We combine these distances non-linearly according to cuv :=
max{θ0+θ1dm+θ2dc+θ3dsp, θ4+θ1dm}. Ideally, the parameters

θ ∈ R
5 would be learned from training data. In reality, training

data for motion segmentation is scarce. Thus, we set θ as defined

and validated on training data in [40].

3.3 High-Level Graph of Bounding Boxes

At the high level, we construct a graph Ghigh = (V high, Ehigh)
whose nodes are bounding boxes and whose edges connect

bounding boxes that potentially belong to the same object. In

addition, we define, for every edge ehigh := {u, v} ∈ Ehigh, a

costs cehigh ∈ R to be payed for any feasible solution that assigns

the bounding boxes u and v to distinct objects.

For the two experiments we conduct and describe in Section 4,

the one with the FBMS59 motion segmentation benchmark and the

other with the MOT tracking benchmark, the construction of the

graph and edge costs is different. For example, we define a faster

R-CNN [62] bounding box object detector for the FBMS59 motion

segmentation benchmark while we adhere to bounding boxes that

are given for the MOT tracking benchmark, as required to evaluate

on this benchmark. In both cases, the underlying object model

allows to produce a tentative frame-wise object segmentation or

template Tv of the detected object v ∈ V high. Such a segmentation

template can provide far more information than the bounding box

alone. Potentially, a template indicates uncertainties and enables to

find regions within each bounding box, where points most likely

belong to the detected object.

Further commonalities between the two constructions are

described here. Differences are described in detail in Section 4.

We consider between every pair of bounding boxes their

intersection over union (IoU). As the plain bounding box IoU

is less informative for larger temporal distance, we additionally

compute the distance proposed by Tang et al. [68] based on

Deep Matching [75]. For every pair of frames ta and tb and

every detection u in ta, Deep Matching generates a set of

matched keypoints Mu,tb inside the detection. For every pair of

detections u in ta and v in tb with ta ̸= tb, we can compute

the intersection as MIuv = |Mu,tb ∩ Mv,ta| and the union as

MUuv = |Mu,tb ∪ Mv,ta |. Then, the Deep Matching based IoU

can be computed as

IoUDM
uv =

MIuv

MUuv
(4)

IoUDM can be understood as a robust IoU measure. It is

especially needed when bounding boxes in non-neighboring frames

are to be compared. In these cases, the traditional IoU does not

provide a reliable signal because objects or the camera might have

moved significantly. Compare [68] for a thorough analysis.

If the IoU between two bounding boxes is zero, we need to

measure their spatial difference. To this end, we consider, for every

bounding box u, its spatio-temporal center ru = (xu, yu, tu)⊤

and size (wu, hu)⊤. For every edge {u, v} ∈ Ehigh between

bounding boxes u and v, we compute the normalized distance

between u and v

dsp(u, v) = 2

∥

∥

∥

∥

(

(xu − xv)/(wu + wv)
(yu − yv)/(hu + hv)

)
∥

∥

∥

∥

, (5)

where ∥.∥ denotes the ℓ2-norm and the factor 2 accounts for the

normalization of the distance between the bounding box centers

by the average of their widths and heights. Intuitively, small, non-

overlapping bounding boxes whose centers are far away from each

other are less likely to belong tho the same objects than large

bounding boxes at the same distance.

Both dsp (5) and IoU are used for computing the edge weights

cuv for {u, v} ∈ Ehigh. However, the exact computation depends

on the task and dataset, where different information is available.

For the multiple object tracking task, all detected objects are

pedestrians and can thus share a common template T while the

object categorie is unknown for the motion segmentation task. On

the MOT datasets, detections are provided after non-maximum

suppression and thus might be missing in some frames. Thus,

robust longer distance connections might be necessary. In contrast,

on motion segmentation, we ran our own detector and thus have

access to overlapping and low-scoring detections. We will discuss

these details in our experiments.
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Fig. 3. Edges elh between high and low level nodes. For every detection
v, the template Tv is evaluated at the spatial location of every trajectory
u ∈ V low. An edge with an attractive cost clh

e
is introduced if u intersects

with Tv in a location of high object probability (green edges). If u misses
the template Tv and the distance dsp2(u, v) to the center of Tv is larger
than a threshold σ (indicated by the gray circle), an edge with repulsive
edge cost is introduced (red). If u intersects with Tv in a location of
low object probability and the distance is smaller than σ, no edge is
introduced.

3.4 Inter-Level Edges

For every image t, every bounding box v detected in this image

and every point trajectory u intersecting this image, we consider

the size (wv, hv) and center (xv, yv)⊤ of the bounding box. We

compare the center of the bounding box with the point (xu, yu)⊤

in which the trajectory intersects with the image by the metric

dsp2(u, v) = 2

∥

∥

∥

∥

(

(xu − xv)/wv

(yu − yv)/hv

)
∥

∥

∥

∥

, (6)

where the factor 2 corrects for the fact that we divide the distance

between point trajectory and bounding box center by the full

width and height. Thus, the normalized distance dsp2 is 1 along

an ellipse with shape parameters wv/2 and hv/2. For dsp2 >
√
2,

the bounding box is fully contained within the ellipse. As the

probability that a bounding box v ∈ V high and a point trajectory

u ∈ V low relate to the same object visible in the image depends

more specifically on the relative location of both, we encode by

Tv(x, y) ∈ (0, 1) the probability that the point (x, y) in the

image plane is covered by the shape of the object represented

by the bounding box v. See Fig. 3 for an illustration. For every

detection v, the template Tv is evaluated at the spatial location

of every trajectory u ∈ V low. An edge with an attractive cost clh
e

is introduced if u intersects with Tv in a location of high object

probability. If u misses the template Tv and the distance dsp2(u, v)
to the center of Tv is larger than a threshold σ, an edge with

repulsive edge cost is introduced. If u intersects with Tv in a

location of low object probability and the distance is smaller than

σ, no edge is introduced.

Specifically, we define a probability puv ∈ [0, 1] of the

bounding box v ∈ V high and the point trajectory u ∈ V low

belonging to distinct objects as

puv :=

⎧

⎪

⎨

⎪

⎩

1− Tv(xu, yu) if Tv(xu, yu) >
1
2

1 if dsp2(u, v) > σ
1
2 otherwise

. (7)

The parameter σ ∈ R
+ depends on the application. It has to be

chosen sufficiently large such that it does not conflict with the first
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Fig. 4. Examples of the faster R-CNN object detections on images from
FBMS59 sequences [54]. The first row shows the best 20 detections. The
second row shows three exemplary templates T generated with DeepLab
[17], [55] on these detections.

case in (7). Intuitively, its choice depends, on the one hand, on the

localization accuracy of bounding boxes, on the other hand on the

density of objects that need to be distinguished. A small σ allows

the insertion of repulsive terms to trajectories on nearby objects.

However, if the localization is inaccurate, small σ values can lead

to oversegmentation.

W.r.t. the probability puv , we define the cost cuv :=
logit(puv) = log puv

1−puv
.

3.5 Search for Feasible Solution

In order to find feasible solutions of low cost to the instances of

the NP-hard correlation co-clustering problem that we construct

from image data as described above, we employ the efficient primal

feasible local search heuristic of [41].

4 EXPERIMENTS

In this section, we apply the proposed correlation co-clustering

problem to the task of motion segmentation and multiple object

tracking and show the following evaluations:

• We show results for the FBMS59 [54] motion segmentation

dataset containing sequences with various object categories

and motion patterns (Sec. 4.1).

• We show results for the 2D MOT 2015 benchmark [44],

the MOT 2016 benchmark [50] and the MOT 2017

benchmark [44], [50] for multiple object tracking (Sec. 4.2).

• We compare our segmentations on two of these sequences

to the previous approach to joint segmentation and tracking

by Milan et al. [49] (Sec. 4.3).

• We report results for the tracking performance of our

model on three standard multiple object tracking sequences

of [3], [81]. The evaluation on these sequences allows a

comparison to Fragkiadaki et al. [30] and Tang et al. [67]

(Sec. 4.4).

4.1 Motion Segmentation

The FBMS59 [54] motion segmentation dataset consists of 59

sequences split into a training set of 29 and a test set of 30

sequences. The videos are of varying length (19 to about 500

frames) and show diverse types of moving objects such as cars,

persons and different types of animals. The results are evaluated in
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terms of segmentation precision and recall, the aggregate f-measure

and the number of segmented objects with f-measure ≥ 0.75 for

different levels of trajectory sampling rates as well as for densified

segmentations using the variational method from Ochs et al. [52].

Among these measures, the f-measure is the most representative

since it reflects the trade-off between precision and recall.

4.1.1 Implementation Details

To apply the correlation co-clustering problem to this data, the

very first question is how to obtain reliable detections in a video

sequence without knowing the category of the object of interest. To

this end, we use detections from the Faster R-CNN [62] detector,

trained on the PASCAL VOC 2012 dataset.

Faster R-CNN is an object detector that integrates a region

proposal network with the Fast R-CNN [31] network. In our

experiments, we compute detections using the code and model

published with their paper. We only use the most confident

detections, i.e., those with detection scores above a threshold

of 0.97, on a scale between 0 and 1. This yields a sparse set of

detections with high precision but potentially low recall.

From these detections, we generate segmentation proposals

using DeepLab [17], [55]. These tentative segmentations serve as

templates for the computation of pairwise costs between detections

and trajectories. Examples of detections and corresponding tem-

plates per frame are shown in Fig. 4. These examples show the

localization quality of the detections.

Since occlusion does not play a significant role in this dataset,

we compute pairwise terms between detections only within the

same frame and in directly neighboring frames. This way, we can

use the standard intersection over union (IoU) definition computed

directly on the templates. From the IoU and the pairwise distance

dsp from (5), we compute the pseudo cut probability between two

bounding boxes u, v ∈ V high as

puv =

⎧

⎪

⎨

⎪

⎩

exp(−q)
1+exp(−q) if IoU(u, v) > 0.7

1
1+exp(−q′) if dsp(u, v) > 1.2
1
2 otherwise

(8)

Here, q := −20·(0.7−IoU(u, v)) and q′ := −5·(1.2−dsp(u, v)).
Note that an IoU > 0.7 implies a distance dsp < 1.2. We have

chosen these parameters so as to yield reasonable results on the

FBMS59 training set.

The cost cuv is computed from the probability puv according

to (7) with σ = 2. This large threshold accounts for the uncertainty

in the bounding box localizations.

4.1.2 Baseline Experiments

As a baseline that helps assessing the impact of the segmentation

templates from DeepLab [17], [55] , we experiment with a trivial

template, i.e. an ellipsoid placed in the center of each bounding

box with shape parameters 0.5 times the bounding boxes width

and height, respectively. This template’s link probability decreases

linearly with the normalized distance from the bounding box center,

being 1 for dsp2 = 0 and 0.5 for dsp2 = 0.5.

To further assess the impact of erroneous detections and

segmentation templates on the optimization, we ran an oracle

experiment using the provided sparse ground truth segmentations

and their bounding boxes as high-level cues. In theory, these

ground truth segmentations should support the grouping of point

trajectories which belong to the same object while avoiding to group

point trajectories from different objects. This should lead to less

Fig. 5. Examples of CCC segmentation results densified by the variational
method of Ochs et al. [52] on three sequences of the FBMS59 [54]
benchmark.

conflicting information than the use of detection and segmentation

estimates.We evaluate the impact of the available sparse ground

truth on the trajectory level segmentation quality.1

To assess the impact of the joint model components, we

evaluate, for 8 pixel trajectory sampling, not only the full model but

also its performance if costs between detection nodes are omitted

(CCC - Ehigh).

4.1.3 Results

The quantitative evaluation of results on the FBMS59 benchmark

is shown in Tab. 1 in terms of precision and recall, the aggregate

f-measure and the number of segmented objects with f-measure

≥ 0.75. The motion segmentation considering only the trajectory

information from [40] performs already well on the FBMS59

benchmark. When the high-level information from object detections

and DeepLab templates is added to this model (CCC - Eh), the

f-measure improves by 2%. Our full model CCC yields a further

improvement by 1%, for 8 pixel point sampling. Note that we

outperform the baseline method [40] by a significant margin on the

test set. We outperform also the higher-order spectral clustering

method [53] as well as the higher-order multicut model from [39].

To assess the importance of the informative templates from

DeepLab, we evaluate our ellipse-shaped baseline template. The

according results are denoted by CCC BBX-baseline. It can be

observed that this un-informed template still yields an improvement

of about 1% in f-measure and an increase in the number of detected

objects on both datasets over the baseline method [40].

From the experiment on the sparsely available oracle detections

and segmentations (sparse oracle in Tab. 1), we can also observe

an improvement over the baseline [40] without such information.

However, since the ground truth is only provided for every

20th frame, the oracle results are poorer than the ones obtained

using fasterRCNN detections and DeepLab segmentations. The

additional, noisy information on all frames leads to an improvement

over only sparsely available ground truth information.

For denser sampling rate with 4 pixel distance, we only compare

our full model to the baseline method [40]. The behavior is similar.

The densified version of our segmentations improves over those

from [40] by more than 3% on both datasets. A visualization of

densified results is shown in Fig. 5.

Qualitative results of the motion segmentation as well as the

tracking are shown in Fig. 6 and 7. Due to the detection information,

1. Since we are solving a single, constrained optimization problem on
trajectory and bounding box level, we can not directly investigate the impact
of this ground truth information on the trajectory subproblem in terms of the
resulting energy.
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Algorithm Sampling Training set Test set

Precision Recall f-measure # Objects Precision Recall f-measure # Objects

SC [54] 8 85.10% 62.40% 72.0% 17/65 79.61% 60.91% 69.02% 24/69

SC+HO [53] 81.55% 59.33% 68.68% 16/65 82.11% 64.67% 72.35% 27/69

Lifted HO MC [39] 86.83% 77.79% 82.06% 32/65 87.77% 71.96% 79.08% 25/69

MCe [40] 86.73% 73.08% 79.32% 31/65 87.88% 67.7 % 76.48% 25/69

CCC BBX-baseline 86.92% 75.73% 80.94% 34/65 82.77% 72.36% 77.22% 31/69

CCC - Ehigh 83.46% 79.46% 81.41% 35/65 84.06% 76.89% 80.30% 35/69

CCC 84.85% 80.17% 82.44% 35/65 84.52% 77.36% 80.78% 35/69

sparse oracle 90.04% 76.19% 82.25% 34/65 86.53% 69.82% 77.14% 27/69

MCe [40] 4 86.79% 73.36% 79.51% 28/69 86.81% 67.96% 76.24% 25/69

CCC 83.81% 78.16% 80.89% 32/69 84.61% 77.28% 80.78% 37/69

treeDL [56] dense - - - - 78.41% 65.52% 72.33% -

MCe [40] 85.31% 68.70% 76.11% 24/65 85.95% 65.07% 74.07% 23/69

CCC 84.28% 75.15% 79.66% 29/65 83.17% 74.65% 78.68% 32/69

TABLE 1
Results for the FBMS-59 training and test set. For both trajectory sampling rates as well as for densified segmentations, the proposed model CCC

improves over the state of the art.
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Fig. 6. Comparison of the proposed CCC model and the trajectory multicut (MCe) [40] on the marple6 sequence of FBMS59. While MCe can not
properly segment the persons, the tracking information from the bounding box subgraph helps our joint model to segment the two men throughout the
sequence despite scaling and rotational motion. Additionally, static, consistently detected objects like the car in the first part of the sequence are
segmented as well. As these are not annotated, this causes over-segmentation penalty on the FBMS59 metrics.

static objects like the car in the marple6 sequence (yellow cluster)

can be segmented. The man approaching the camera in the same

sequence can be tracked and segmented (green cluster) throughout

the sequence despite the scaling motion. Similarly, in the horses06

sequence, all three moving objects can be tracked and segmented

through strong partial occlusions. As the ground truth annotations

of FBMS59 are sparse and only describe moving objects, we cannot

assess the multiple object tracking performance for this data set.

4.2 Multi-Target Tracking on MOT

We now apply the proposed correlation co-clustering problem to

the task of multiple object tracking and show the benefit of this

joint approach in terms of the 2D MOT 2015 [44] (MOT15), MOT

2016 [50] (MOT16) and MOT 2017 (MOT17) benchmarks. These

benchmarks contain videos from static and moving camera recorded

in unconstrained environments. MOT15 contains 11 training and

11 test sequences, MOT16 and MOT17 consist of 7 sequences

each in training and test. While the sequences in MOT16 and

MOT17 are identical, the datasets differ (1) in the ground truth

annotations, which have presumably been improved from MOT16

to MOT17, and (2) in the given pedestrian detections. In all three

benchmarks, detections for all sequences are provided and allow for

direct comparison to other tracking methods. While the detections

in MOT15 are computed using the Aggregate Channel Features
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Fig. 7. Segmentation and tracking results of the proposed CCC model and the trajectory multicut (MCe) [40] on the horses06 sequence of FBMS59.
MCe can not segment the person and the horse next to him due to the difficult motion and strong partial occlusions.

pedestrian detector [23], DMP v5 [27] detections are provided

for MOT16. MOT17 provides three different sets of detections

[26], [62], [78] for each sequence in order to encourage tracking

approaches that generalize well over different object detectors.
The tracking performance on the official MOT15 [44],

MOT16 [50], and MOT17 [44], [50] benchmarks is evaluated in

terms of the CLEAR MOT evaluation metrics [10]. We report the

ID F1 score, i. e. the ratio of correctly identified detections over the

average number of ground-truth and computed detections (IDF1),

the number of mostly tracked (MT) and mostly lost (ML) objects,

the fragmentation (FM) and MOTA (multiple object tracking

accuracy), which is a cumulative measure combining missed targets

(FN), false alarms (FP), and identity switches (IDs).

4.2.1 Implementation Details

We connect every bounding box u to every other bounding box v
within a distance of 3 frames in MOT15 and MOT16, 5 frames in

MOT17. To compute pairwise costs cuv between bounding boxes u
and v, we consider the detection scores su, sv ∈ R, their minimum

suv := min{su, sv} and the Deep Matching distance IoUDM
uv as

defined in equation (4). As Tang et al. [68], we define the feature

vector fuv as

fuv := (IoUDM
uv , suv, IoUDM

uv · suv, (IoUDM
uv )2, s2uv) (9)

and learn the costs cuv from fuv by logistic regression.
Pairwise costs between a bounding box u ∈ V high and a point

trajectory v ∈ V low are computed according to (7), with σ = 1.5.

The template Tu is computed as the average pedestrian shape from

the shape prior training data provided in [21] and its horizontally

flipped analogon. This template is depicted Fig. 8. It is identical

for all bounding boxes up to scaling.
As the bounding boxes that come with the data set are relatively

sparse (due to non-maximum suppression), the statistics of the

graph are altered. To compensate for this fact, we apply a simple

heuristic. Assuming that about 20 bounding boxes have been

suppressed for every true detection in 2D MOT 2015 and about 4

bounding boxes have been suppressed for every true detection in

MOT 2016, we weight the links between trajectory and detection

nodes by factor 20 and 4 respectively. We are aware that this is

a crude heuristic. Better options would be to learn this factor per

sequence type or (better) to use the detections before non-maximum

suppression which are unfortunately not provided. The conversion

from clusters to tracks is done as in [68]. Specifically, in each frame,

we obtain object locations by averaging all detections belonging

to the same cluster, weighted by their detection score. A track

is computed by connecting these averages of every cluster over

time. Due to the detection scores included in the pairwise terms

between bounding boxes, false detections tend to end up as isolated

nodes. As [68], we eliminate all clusters of size less than 5 in all

experiments. Missing detections within a track are hallucinated

by bilinear interpolation. On the MOT15 data, we additionally

hallucinate missing detections in up to three neighboring frames to

a resulting track by following the point trajectories associated with

this track if available.

Fig. 8. The average pedestrian shape tem-
plate used for the computation of pairwise
terms between pedestrian detections and
trajectories.

4.2.2 Results

Here, we evaluate the tracking performance on the official

MOT15 [44], MOT16 [50], and MOT17 [44], [50] benchmarks in

terms of the CLEAR MOT evaluation metrics [10]. Results for the

MOT15 benchmark are shown in Tab. 2. We compare to the state-

of-the-art multi-target tracking method on MOT15 [19], and the

very recent methods from [16], [63], which employ convolutional

neural network based appearance features, Sadeghian et al. [63]

in conjunction with LSTMs to establish long-term dependencies.

Our results are competitive in MOTA and improve over methods
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IDF1 MT ML FP FN IDs FM MOTA

Long et al. [16] 47.1 8.7% 37.4% 4,005 33,203 586 1,263 38.5

Sadeghian et al. [63] 46.0 15.8% 26.8% 7,933 29,397 1,026 2,024 37.6

Choi [19] 44.6 12.2% 44% 7,762 32,547 442 823 33.7

Milan et al. [49] 31.5 5.8% 63.9% 7,890 39,020 697 737 22.5

CCC 45.1 23.2% 39.3% 10,580 28,508 457 969 35.6

TABLE 2
Multi-target tracking results on the 2D MOT 2015 benchmark. On the aggregate measure MOTA, we improve over [19] and [49], as well as in the

important metrics MT (mostly tracked objects) and FN (the number of false negatives).

IDF1 MT ML FP FN IDs FM MOTA

Choi [19] 53.3 18.3% 41.4% 9,753 87,565 359 504 46.4

Tang et al. [68] 46.3 15.5% 39.7% 6,373 90,914 657 1.114 46.3

Tang et al. [70] 51.3 18.2% 40.1% 6,654 86,245 481 595 48.8

Henschel et al. [32] 44.3 19.1% 38.2% 8,886 85,487 852 1,534 47.8

Levinkov et al. [45] 47.3 18,2% 40.4% 5,844 89,093 629 768 48.4

CCC 52.3 20,4% 46.9% 6,703 89,368 370 598 47.1

TABLE 3
Multi-target tracking results on the MOT16 benchmark. Here, we improve over the state of the art in the metric MT (mostly tracked objects), while all

top methods are very close in the MOTA. Again, our CCC model yields a low number of ID switches.

FAF MT ML FP FN IDs FM MOTA

Henschel et al. [32] 1.3 21.2% 36.3% 22,732 250,179 2,583 4,141 51.2

Kim et al. [47] 1.3 20.8% 36.9% 22,875 252,889 2,314 2,865 50.7

CCC 1.4 20.7% 37.4% 24,986 248,328 1,851 2,991 51.2

TABLE 4
Multi-target tracking results on the MOT17 challenge. Instead of the ID F1 score, the false alarm frequency (FAF) was reported in the challenge. Our
CCC model yields the lowest number of ID switches while performing on par with Henschel et al. in terms of MOTA, outperforming all other challenge

submissions.

which are, as ours, based on weak appearance terms [19]. In

comparison, we observe a decrease in the number of false negatives

while false positives increase. In fact, the large amount of false

positives our method produces might be due to the hallucinated

detections, which therefore seems to have a rather negative impact

on the overall MOTA score. We show a clear improvement over the

performance of the previously proposed method for joint tracking

and segmentation [49].

Results for the MOT16 benchmark are shown in Tab. 3. Here,

we first compare to the MOT 2016 Challenge winning approach by

Tang et al. [68], as well as to the approach by Levinkov et al. [45],

which is also based on correlation clustering. While [68] solve a

correlation clustering problem on a bounding box graph with

advanced features, [45] solve a node labeling minimum cost

multicut problem that allows to discard unreliable bounding boxes.

Our joint model can improve over [68] by reducing the number of

identity switches and fragmentations while keeping the number of

false alarms low, resulting in a better MOTA. Compared to [45]

our CCC model is slightly worse in MOTA because of the higher

number of false positives. However, we outperform [45] in terms of

mostly tracked objects and ID switches. As for MOT15, our method

is outperformed by a deep learning based approach [69], which

establishes long term connections by a strong, learned appearance

term. Such information could be included in our approach.

Results for the MOT17 challenge are shown in Tab. 4. Follow-

ing the general tendency of the results on MOT15 and MOT16,

the proposed approach achieves a low number of ID switches

and a good MOTA score. Together with Henschel et al. [32], the

proposed approach won the MOT17 challenge 2 This indicates

good performance without extensive parameter optimization. After

the MOT17 challenge, Henschel et al. [32] updated their results on

the MOT17 benchmark and improved the MOTA by 0.1 on this

data. Unlike our approach, their method is not only based on the

provided object detections but employs a specifically trained head

detector to provide an additional high-level cue.

4.3 Segmentation Evaluation on Tracking Sequences

In order to assess the quality of the resulting motion segmentations

in the tracking scenario, we evaluate our sparse segmentations on

the pedestrian tracking sequence tud-crossing from the MOT15

benchmark. For this sequence, segmentation annotations in every

10th frame have been published in [24]. The pedestrian motion

segmentation is evaluated with the metrics precision (P), recall (R),

f-measure (F) and number of retrieved objects (O) as proposed for

the FBMS59 benchmark [54].

2. The MOT17 challenge was held during the 1st Joint BMTT-PETS
Workshop on Tracking and Surveillance in conjunction with the Confer-
ence on Computer Vision and Pattern Recognition - CVPR 2017, https:
//motchallenge.net/MOT17 results 2017 07 26.html

https://motchallenge.net/MOT17_results_2017_07_26.html
https://motchallenge.net/MOT17_results_2017_07_26.html
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Fig. 9. Results of the proposed Correlation Co-Clustering model on the tud-crossing sequence from MOT15.

TUD-Crossing

Precision Recall f-measure O (≥ 75) O (≥ 60)

SC [54] 67.92% 20.16% 31.09% 0/15 1/15
MCe [40] 43.78% 38.53% 40.99% 1/15 1/15

CCC - Ehigh 62.05% 54.72% 58.15% 1/15 9/15

CCC - Elow 69.37% 48.88% 57.35% 2/15 9/15
CCC 67.22% 55.11% 60.57% 2/15 9/15

TABLE 5
Motion Segmentation on the Multi-Target Tracking sequence

tud-crossing. O is the number of extracted objects, with
f-measure ≥ 75% and with f-measure ≥ 60% respectively. All results

are computed for sparse trajectory sampling at 8 pixel distance, leading
to an average region density of 0.85%.

To assess the importance of the model parts, we consider

two baseline experiments. Specifically, we not only evaluate the

full CCC model but also the performance without costs between

trajectories (CCC - Elow) as well as the performance when omitting

the pairwise terms between tracklet nodes (CCC - Ehigh).

A qualitative result is shown in Fig. 9. The bounding boxes

overlayed on the image sequence are, for every frame and cluster,

the ones with the highest detection score. These were also used for

the tracking evaluation. The second row visualizes the trajectory

segmentation. Both detection and trajectory clusters look satisfying.

Thanks to the segmentation, better localizations for the tracked

pedestrians can be provided.

Quantitative results and a comparison with the motion segmen-

tation methods [40], [54] are shown in Tab. 5. The comparison

between the full model CCC and its parts CCC - Elow and CCC

- Ehigh confirms that the full, joint CCC model performs best.

On the important f-measure, CCC improves over the previous

state-of-the-art in motion segmentation on this sequence.

We want to compare our motion segmentation results on

tracking sequences to those from Milan et al. [49]. Therefore, we

densify our sparse segmentation results using [51] and recompute

the segmentation from [49] using their code with the default

parameters. The results are given in Tab. 6. At a similar precision,

our segmentations show a higher recall and consequently, a better

f-measure.

For further comparison to Milan et al. [49], we also evaluate

TUD-Crossing
Precision Recall f-measure

Milan et al. [49] 60.61% 19.25% 29.23%
dense CCC 61.01% 46.98% 53.08%

TABLE 6
Motion Segmentation on the tud-crossing sequence from MOT15.

PETS-S2L2
cl.err. per-reg.err. over-seg. extr. obj.

Milan et al. [49] 3.56 24.34 1.42 7
dense CCC 4.38 23.20 0.83 11

TABLE 7
Segmentation evaluation on the PETS-S2L2 sequence from MOT15. As

Milan et al. [49], we report the clustering error (percentage of
misclassified pixels); the per-region error (average ratio of wrongly
labeled pixels per ground truth mask); the oversegmentation error

(number of segments covering each mask); and the number of extracted
objects as those correctly segmented in at least 90% of their area).

our densified segmentations on the PETS-S2L2 sequence used in

their paper for evaluation. Here we evaluate on the same standard

segmentation measures as [49]. The results are given in Tab. 7.

While the clustering error is lower for [49], the proposed CCC

model outperforms [49] in all other metrics.

4.4 Comparison to Related Tracking Methods

We evaluate the tracking and segmentation performance of our

Correlation Co-Clustering model on the publicly available se-

quences: TUD-Campus, TUD-Crossing [3] and ParkingLot [81].

These sequences have also been used to evaluate the Subgraph

Multicut method by Tang et al. [67] and therefore allows for

direct comparison to this method. A direct comparison to the Two-

Granularity-Tracking method by Fragkiadaki et al. [30] is provided

on the TUD-Crossing sequence for which results are reported

in [30].

4.4.1 Implementation Details

To allow for direct comparison to Tang et al. [67], we compute

all high-level information, i.e. the detection nodes v ∈ V high,
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Fig. 10. The average pedestrian shape template and the trajectory-
tracklet edges used for the comparison to subgraph multicut [67].

edges e ∈ Ehigh, and their costs ce exactly as reported in [67]

with only one difference: the Subgraph Multicut models from [67]

employs not only pairwise but also unary terms which our proposed

Correlation Co-Clustering model does not require. We omit these

terms.

In [67], DPM-based person detections [26] are used. To

add robustness and enable the computation of more specific

pairwise terms, these detections are grouped to small, overlapping

tracklets of length 5 as in [3] without applying any Non-Maximum

Suppression. This is in accordance to [67] and therefore beneficial

for a direct comparison. Since tracklets are computed in every

frame, the same detections can be part of several (at most 5)

tracklets. In the experiments on the MOT benchmarks in Sec. 4.2,

this tracklet computation is not possible because detections are

only provided after non-maximum-suppression.

Pairwise terms between the tracklets are computed from

temporal distances, normalized scale differences, speed, spatio-

temporal locations and dColorSIFT features [82], combined non-

linearly as in [67].

The computation of pairwise terms cuv between nodes u ∈
V low and v ∈ V high has to be adapted in this setup. Unlike in

our standard setup, a high level node v ∈ V high does not directly

represent a detection bounding box but rather a set of 5 boxes.

We compute the average pedestrian shape from the shape prior

training data provided in [21] (see Fig. 10 (a)). For every detection

v, Tv denotes the pedestrian template shifted and scaled to the kth

bounding box position and size. The tracklet information allows

to determine the walking direction of the pedestrian, such that

the template can be flipped accordingly. For every detection uk

with k = {1, . . . , 5} of a tracklet v ∈ V high, the cut probability

pukw to a trajectory node w ∈ V low is computed according to

Eq. (7) with σ = 1.2. A trajectory node w ∈ V low is linked to a

tracklet node v ∈ V high coexisting in a common frame with an

edge cost cwv =
∑5

k=1 logit(pukw). Fig. 10 (b) visualizes the

edges between tracklets and point trajectories.

4.4.2 Results

Quantitative results on the pedestrian tracking task are given in

Tab. 8. Again, we evaluate the importance of the model parts

(denoted by CCC-Ehigh and CCC-Elow). Among these, the

proposed CCC model performs best on the MOTA metric, showing

that the joint approach works better than any of its parts.

Compared to other methods, the proposed approach shows the

general tendency to reduce the number of false negatives, while the

number of false positives is higher than in [67].

On the sequences TUD-Campus and TUD-Crossing, we also

compare to previous approach to joint segmentation and tracking

[49]. The results for TUD-Campus were obtained using their code,

GT MT ML FP FN IDs FM MOTA

TUD-Campus 8

Milan et al. [49] 1 4 25 242 0 1 25.6

Subgraph MC [67] 5 1 2 58 0 1 83.3

CCC - Elow 6 1 19 35 0 0 85.0

CCC - Ehigh 5 1 20 63 3 2 76.0

CCC 5 1 5 45 1 0 85.8

TUD-Crossing 13

Fragkiadaki et al. [30] - - - - 0 - 82.9

Milan et al. [49] 3 3 37 456 15 16 53.9

Subgraph MC [67] 8 2 11 198 1 1 80.9

CCC - Elow 9 0 22 161 5 11 82.9

CCC - Ehigh 12 0 204 83 14 5 72.7

CCC 9 0 22 160 2 9 83.3

ParkingLot 14

Subgraph MC [67] 13 0 113 95 5 18 91.4

CCC - Elow 13 0 164 85 9 13 89.5

CCC - Ehigh 13 0 307 79 6 15 84.1

CCC 13 0 129 85 6 15 91.1

TABLE 8
Tracking result on multi-target tracking sequences TUD-Campus,

TUD-Crossing [3] and ParkingLot [81]

while the result for [49] on TUD-Crossing is taken from the paper.

For both sequences, our joint approach CCC outperforms this

previous method. Fragkiadaki et al. [30] also provide results for

the TUD-crossing sequence. They achieve a MOTA of 82.9 on this

sequence. This result is close to but below ours.

4.5 Discussion

The proposed Correlation Co-Clustering method jointly deals with

the related problems of trajectory-level motion segmentation and

multiple object tracking. The joint task is achieved by phrasing a

single and clean mathematical objective. The current setup has two

limitations. First, the graph construction itself depends on several

parameter choices. Currently, these parameters are manually set.

Provided a sufficient amount of training data, these parameters

could be learned or optimized by a grid search. Second, certified

optimal solutions to the large and hard instances of the apx-hard

problem we consider are out of our reach at the time of writing.
Contributions to both of these issues will most likely lead to

a further improvement of results and will be subject to future

research.

5 CONCLUSION

We have proposed a correlation co-clustering model for combining

low-level grouping with high-level detection and tracking. We have

demonstrated the advantage of this approach by combining bottom-

up motion segmentation by grouping of point trajectories with

high-level multiple object tracking by clustering of bounding boxes.

We show that solving the joint problem is beneficial at the low

level, in terms of the FBMS59 motion segmentation benchmark,

and at the high level, in terms of the MOT detection and tracking

benchmarks. Results of the proposed method are state-of-the-art in

motion segmentation and winning entry of the MOT17 challenge

for multiple object tracking.
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