Physical Intelligence


2019


Scientific Report 2016 - 2018
Scientific Report 2016 - 2018
2019 (mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January 2016 to December 2018. It is our third report since the founding of the institute in 2011. This status report is organized as follows: we begin with an overview of the institute, including its organizational structure (Chapter 1). The central part of the scientific report consists of chapters on the research conducted by the institute’s departments (Chapters 2 to 5) and its independent research groups (Chapters 6 to 18), as well as the work of the institute’s central scientific facilities (Chapter 19). For entities founded after January 2016, the respective report sections cover work done from the date of the establishment of the department, group, or facility.

Scientific Report 2016 - 2018 [BibTex]

2015


Untethered Magnetic Micromanipulation
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

DOI Project Page [BibTex]

2015

DOI Project Page [BibTex]

2014


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

Project Page [BibTex]

2014

Project Page [BibTex]

2012


no image
Automated Tip-Based 2-D Mechanical Assembly of Micro/Nanoparticles

Onal, C. D., Ozcan, O., Sitti, M.

In Feedback Control of MEMS to Atoms, pages: 69-108, Springer US, 2012 (incollection)

[BibTex]

2012

[BibTex]

2011


no image
Automated Control of AFM Based Nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 237-311, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

2011

[BibTex]


no image
Teleoperation Based AFM Manipulation Control

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 145-235, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

[BibTex]


no image
Descriptions and challenges of AFM based nanorobotic systems

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 13-29, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

[BibTex]


no image
Applications of AFM Based Nanorobotic Systems

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 313-342, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

[BibTex]


no image
Nanomechanics of AFM based nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 87-143, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

[BibTex]


no image
Instrumentation Issues of an AFM Based Nanorobotic System

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 31-86, Springer Berlin Heidelberg, 2011 (incollection)

[BibTex]

[BibTex]

2010


no image
Nanohandling robot cells

Fatikow, Sergej, Wich, Thomas, Dahmen, Christian, Jasper, Daniel, Stolle, Christian, Eichhorn, Volkmar, Hagemann, Saskia, Weigel-Jech, Michael

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-31, CRC Press, 2010 (incollection)

[BibTex]

2010

[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

[BibTex]

[BibTex]

2009


no image
Biologically Inspired Polymer Microfibrillar Arrays for Mask Sealing

Cheung, E., Aksak, B., Sitti, M.

CARNEGIE-MELLON UNIV PITTSBURGH PA, 2009 (techreport)

[BibTex]

2009

[BibTex]

2008


no image
Biologically Inspired Polymer Micro-Patterned Adhesives

Cheung, E., Sitti, M.

EDGEWOOD CHEMICAL BIOLOGICAL CENTER ABERDEEN PROVING GROUND MD, 2008 (techreport)

[BibTex]

2008

[BibTex]

2007


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

[BibTex]

2007

[BibTex]

2005


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

[BibTex]

2005

[BibTex]


Scientific Report 2016 - 2021
Scientific Report 2016 - 2021
(mpi_year_book)

Abstract
This report presents research done at the Max Planck Institute for Intelligent Systems from January2016 to November 2021. It is our fourth report since the founding of the institute in 2011. Dueto the fact that the upcoming evaluation is an extended one, the report covers a longer reportingperiod.This scientific report is organized as follows: we begin with an overview of the institute, includingan outline of its structure, an introduction of our latest research departments, and a presentationof our main collaborative initiatives and activities (Chapter1). The central part of the scientificreport consists of chapters on the research conducted by the institute’s departments (Chapters2to6) and its independent research groups (Chapters7 to24), as well as the work of the institute’scentral scientific facilities (Chapter25). For entities founded after January 2016, the respectivereport sections cover work done from the date of the establishment of the department, group, orfacility. These chapters are followed by a summary of selected outreach activities and scientificevents hosted by the institute (Chapter26). The scientific publications of the featured departmentsand research groups published during the 6-year review period complete this scientific report.

Scientific Report 2016 - 2021 [BibTex]