Header logo is pi

pi Thumb sm josh2
Joshua Giltinan
Ph.D. Student
pi Thumb sm mehmet yigit
Mehmet Berk Yigit
Ph.D. Student
pi Thumb sm xgdong photo
Xiaoguang Dong
Ph.D. Student
14 results

2017


Thumb xl publications toc
Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper

Dong, X., Sitti, M.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 6612-6618, 2017 (inproceedings)

Abstract
Most demonstrated mobile microrobot tasks so far have been achieved via pick-and-placing and dynamic trapping with teleoperation or simple path following algorithms. In our previous work, an untethered magnetic microgripper has been developed which has advanced functions, such as gripping objects. Both teleoperated manipulation in 2D and 3D have been demonstrated. However, it is challenging to control the magnetic microgripper to carry out manipulation tasks, because the grasping of objects so far in the literature relies heavily on teleoperation, which takes several minutes with even a skilled human expert. Here, we propose a new spin-walking locomotion and an automated 2D grasping motion planner for the microgripper, which enables time-efficient automatic grasping of microobjects that has not been achieved yet for untethered microrobots. In its locomotion, the microgripper repeatedly rotates about two principal axes to regulate its pose and move precisely on a surface. The motion planner could plan different motion primitives for grasping and compensate the uncertainties in the motion by learning the uncertainties and planning accordingly. We experimentally demonstrated that, using the proposed method, the microgripper could align to the target pose with error less than 0.1 body length and grip the objects within 40 seconds. Our method could significantly improve the time efficiency of micro-scale manipulation and have potential applications in microassembly and biomedical engineering.

DOI Project Page Project Page [BibTex]

2017

DOI Project Page Project Page [BibTex]

2016


Thumb xl publications toc
Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper

Giltinan, J., Diller, E., Sitti, M.

Lab on a Chip, 16(22):4445-4457, Royal Society of Chemistry, October 2016 (article)

Abstract
At the sub-millimeter scale, capillary forces enable robust and reversible adhesion between biological organisms and varied substrates. Current human-engineered mobile untethered micromanipulation systems rely on forces which scale poorly or utilize gripper-part designs that promote manipulation. Capillary forces, alternatively, are dependent upon the surface chemistry (which is scale independent) and contact perimeter, which conforms to the part surface. We report a mobile capillary microgripper that is able to pick and place parts of various materials and geometries, and is thus ideal for microassembly tasks that cannot be accomplished by large tethered manipulators. We achieve the programmable assembly of sub-millimeter parts in an enclosed three-dimensional aqueous environment by creating a capillary bridge between the targeted part and a synthetic, untethered, mobile body. The parts include both hydrophilic and hydrophobic components: hydrogel, kapton, human hair, and biological tissue. The 200 μm untethered system can be controlled with five-degrees-of-freedom and advances progress towards autonomous desktop manufacturing for tissue engineering, complex micromachines, microfluidic devices, and meta-materials.

DOI Project Page Project Page [BibTex]

2016

DOI Project Page Project Page [BibTex]

2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

DOI Project Page Project Page [BibTex]

2015

DOI Project Page Project Page [BibTex]


Thumb xl publications toc
Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper

Chung, S. E., Dong, X., Sitti, M.

Lab on a Chip, 15(7):1667-1676, Royal Society of Chemistry, January 2015 (article)

Abstract
Three-dimensional (3D) heterogeneous assembly of coded microgels in enclosed aquatic environments is demonstrated using a remotely actuated and controlled magnetic microgripper by a customized electromagnetic coil system. The microgripper uses different ‘stick–slip’ and ‘rolling’ locomotion in 2D and also levitation in 3D by magnetic gradient-based pulling force. This enables the microrobot to precisely manipulate each microgel by controlling its position and orientation in all x–y–z directions. Our microrobotic assembly method broke the barrier of limitation on the number of assembled microgel layers, because it enabled precise 3D levitation of the microgripper. We used the gripper to assemble microgels that had been coded with different colours and shapes onto prefabricated polymeric microposts. This eliminates the need for extra secondary cross-linking to fix the final construct. We demonstrated assembly of microgels on a single micropost up to ten layers. By increasing the number and changing the distribution of the posts, complex heterogeneous microsystems were possible to construct in 3D.

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]

2014


no image
Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-gripper

Giltinan, J., Diller, E., Mayda, C., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2077-2082, 2014 (inproceedings)

Project Page Project Page [BibTex]

2014

Project Page Project Page [BibTex]


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Robotic assembly of hydrogels for tissue engineering and regenerative medicine

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

In Journal of Tissue Engineering and Regenerative Medicine, 8, pages: 181-182, 2014 (inproceedings)

Project Page [BibTex]

Project Page [BibTex]


no image
Untethered micro-robotic coding of three-dimensional material composition

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

Nature Communications, 5, pages: DOI-10, Nature Publishing Group, 2014 (article)

Project Page [BibTex]

Project Page [BibTex]


no image
Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers

Diller, E., Sitti, M.

Advanced Functional Materials, 24, pages: 4397-4404, 2014 (article)

Project Page Project Page [BibTex]


no image
Dynamic Trapping and Two-Dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Micro-Robot

Ye, Z., Sitti, M.

Lab on a Chip, 14(13):2177-2182, Royal Society of Chemistry, 2014 (article)

Project Page [BibTex]


no image
Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

Ye, Z., Edington, C., Russell, A. J., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages: 26-31, 2014 (inproceedings)

Project Page [BibTex]

Project Page [BibTex]

2012


no image
Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments

Pawashe, C., Floyd, S., Diller, E., Sitti, M.

IEEE Transactions on Robotics, 28(2):467-477, IEEE, 2012 (article)

Project Page Project Page [BibTex]

2012

Project Page Project Page [BibTex]


no image
Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators

Ye, Z., Diller, E., Sitti, M.

Journal of Applied Physics, 112(6):064912, AIP, 2012 (article)

Project Page [BibTex]

Project Page [BibTex]

2011


no image
Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects

Diller, E., Ye, Z., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1291-1296, 2011 (inproceedings)

Project Page Project Page [BibTex]

2011

Project Page Project Page [BibTex]