Header logo is pi

Thumb sm editted 2
Oncay Yasa
Ph.D. Student
pi Thumb sm ya picture crop u94768
Yunus Alapan
Postdoctoral Researcher
1 result


Thumb xl screenshot 2018 5 9 1802 00475 pdf
Thermocapillary-driven fluid flow within microchannels

Amador, G. J., Tabak, A. F., Ren, Z., Alapan, Y., Yasa, O., Sitti, M.

ArXiv e-prints, Febuary 2018 (article)

Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be more significant than those driven by pressure. By introducing fluid-fluid interfaces on the walls of microfluidic channels, we use surface tension gradients to drive bulk fluid flows. The gradients are specifically induced through thermal energy, exploiting the temperature dependence of a fluid-fluid interface to generate thermocapillary flow. In this report, we provide the design concept for a biocompatible, thermocapillary microchannel capable of being powered by solar irradiation. Using temperature gradients on the order of degrees Celsius per centimeter, we achieve fluid velocities on the order of millimeters per second. Following experimental observations, fluid dynamic models, and numerical simulation, we find that the fluid velocity is linearly proportional to the provided temperature gradient, enabling full control of the fluid flow within the microchannels.

link (url) Project Page [BibTex]