Physical Intelligence



Photocatalytic hydrogen evolution: interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: melamine functionalized poly (heptazine imide)(Adv. Energy Mater. 6/2021)
Photocatalytic hydrogen evolution: interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: melamine functionalized poly (heptazine imide)(Adv. Energy Mater. 6/2021)

Kroeger, J., Jimnez‐Solano, A., Savasci, G., Rovo, P., Moudrakovski, I., Kuester, K., Schlomberg, H., Vignolo‐Gonzalez, H. A., Duppel, V., Grunenberg, L., Dayan, C. B., Sitti, M., Podjaski, F., Ochsenfeld, C., Lotsch, B. V.

Advanced Energy Materials, 11(6):2170028, 2021 (misc)

DOI [BibTex]

DOI [BibTex]

2020


Simultaneous calibration method for magnetic locialization and actuation systems
Simultaneous calibration method for magnetic locialization and actuation systems

Sitti, M., Son, D., Dong, X.

2020, US Patent App. 16/696,605 (misc)

Abstract
The invention relates to a method of simultaneously calibrating magnetic actuation and sensing systems for a workspace, wherein the actuation system comprises a plurality of magnetic actuators and the sensing system comprises a plurality of magnetic sensors, wherein all the measured data is fed into a calibration model, wherein the calibration model is based on a sensor measurement model and a magnetic actuation model, and wherein a solution of the model parameters is found via a numerical solver order to calibrate both the actuation and sensing systems at the same time.

[BibTex]

2016


System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment
System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment

Sitti, M., Yim, S.

2016, US Patent 9,445,711 (misc)

Abstract
Present invention describes a swallowable device with a soft, compliant exterior, whose shape can be changed through the use of magnetic fields, and which can be locomoted in a rolling motion through magnetic control from the exterior of the patient. The present invention could be used for a variety of medical applications inside the GI tract including but not limited to drug delivery, biopsy, heat cauterization, pH sensing, biochemical sensing, micro-surgery, and active imaging.

[BibTex]


Remotely addressable magnetic composite micro-actuators
Remotely addressable magnetic composite micro-actuators

Sitti, M., Diller, E., Miyashita, S.

2016, US Patent 9,281,112 (misc)

Abstract
The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.

[BibTex]

[BibTex]

2014


no image
The design of microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

February 2014, US Patent App. 14/766,561 (misc)

[BibTex]

2014

[BibTex]

2013


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

[BibTex]

2013

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

[BibTex]

[BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

[BibTex]

[BibTex]

2012


no image
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

December 2012, US Patent App. 14/368,079 (misc)

[BibTex]


no image
Dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

December 2012, US Patent App. 13/533,386 (misc)

[BibTex]

[BibTex]


no image
Methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

June 2012, US Patent 8,206,631 (misc)

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2012, US Patent App. 13/429,621 (misc)

[BibTex]

[BibTex]

2007


no image
Space exploration-towards bio-inspired climbing robots

Menon, C., Murphy, M., Sitti, M., Lan, N.

INTECH Open Access Publisher, 2007 (misc)

[BibTex]

2007

[BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

[BibTex]

2005

[BibTex]