Header logo is pi

pi Thumb sm dirk
Dirk Drotlef
Postdoctoral Researcher
pi Thumb sm amador guillermo
pi Thumb sm guo zhan lum
Guo Zhan Lum
Alumni
pi Thumb sm mehmet yigit
Mehmet Berk Yigit
Ph.D. Student
pi Thumb sm muhammad yunusa2
Muhammad Yunusa
Ph.D. Student
pi Thumb sm sukho
Sukho Song
Alumni
pi Thumb sm zhou
Zhou Ye
Alumni
2 results

2018


Thumb xl nl 2018 001642 0005
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, March 2018, PMID: 29510627 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

link (url) DOI [BibTex]

2016


Thumb xl ye et al 2016 advanced materials
Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)

Ye, Z., Lum, G. Z., Song, S., Rich, S., Sitti, M.

Advanced Materials, 28(25):5087-5087, May 2016 (article)

Abstract
Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid–liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine.

DOI [BibTex]